Exam Subatomic Physics Thursday, April 7 2011, 9:00-12:00

Gerco Onderwater

Rijksuniversiteit Groningen / KVI

Before you start, read the following:

- Write your name and student number on top of each page of your exam;
- Illegible writing will be graded as incorrect;
- This exam contains several appendices;
- Final grade = (10 + sum of points)/10;
- Good luck!

1 Allowed and Forbidden Processes (16 Points)

Examine the following processes carefully, and state for each one whether it is *possible* or *impossible*, according to the Standard Model. In the former case, state which interaction(s) is(are) responsible – strong, electromagnetic or weak; in the latter case, cite a conservation law that prevents it from occurring. When unambiguous, the charge is not indicated, thus γ , Λ , and n are neutral; p is positive, e is negative, *etc.* (1 point per process)

(a) $\pi^- \rightarrow \pi^0 + e^- + \bar{\nu}_e$ (i) $\bar{p} \rightarrow \bar{n} + e^- + \bar{\nu}_e$ (b) $\gamma + p \rightarrow \pi^+ + n$ (j) $Z^0 \rightarrow \nu_e + \bar{\nu}_\mu$ (c) $\Delta^- \rightarrow p + \pi^-$ (k) $e^- + \bar{\nu}_e \rightarrow \bar{t} + b$ (1) $\Lambda + p \rightarrow K^- + p + p$ (d) $\Lambda \to n + \gamma$ (e) $D^- \to K^+ + \pi^- + \pi^-$ (m) $p + \bar{p} \to \pi^+ + \pi^- + \pi^0$ (n) $\mu^- \to e^+ + e^- + e^- + \nu_e + \nu_\mu$ (f) $\nu_{\tau} \rightarrow \nu_e + \gamma$ (g) $\pi^- + p \to n + e^+ + e^-$ (o) $\mu^+ + \tau^- \rightarrow \gamma + \gamma + \gamma$ (h) $Z^0 \rightarrow \gamma + \gamma$ (p) $J/\psi \to \nu_\tau + \bar{\nu}_\tau$

2 Nuclear Masses (16 Points)

Consider the Bethe-Weizsäcker semi-emperical mass formula (SEMF) and the isotope table (see Appendices).

- (a) Briefly explain each of the terms in the SEMF. Comment on the A, N and Z dependence. (3 points).
- (b) Give the expression for the binding energy per nucleon. Use the result to argue why the most strongly bound isotopes generally have N > Z. *Hint*: write the binding energy as a function of Z for fixed A and show that the maximum has Z < A/2. You may use $\delta = 0$. (5 points)
- (c) If $^{219}_{88}$ Ra would decay via α , β^- or β^+ -emission, what would in each case be the daughter nucleus? (3 points)
- (d) Which of the three decay modes in (c) are allowed? Why (not)? Which of the allowed decay modes will dominate (motivate)? Note: take m_{α} from the appendix and use $m_{e^{\pm}} = 0.$ (5 points)

3 Descriptions (16 Points)

Explain what is meant by the following terms (in relation to subatomic physics). Be specific! (2 points each):

(a)	weak interaction	(e)	Cabbibo angle
(b)	cross section	(f)	coupling constant
(c)	form factor	(g)	isotope
(d)	hadron	(h)	color

4 Mass Measurement (10 Points)

The mass of fundamental particles can be measured using several methods. Three of them are: magnetic spectrometer, Penning trap and kinematic analysis.

(a) For each method explain why it is sensitive to the mass of a particle. (5 points)

(b) Which method is preferred to measure the mass of :

I. proton

II. neutron

- III. muon ($\tau = 2.2 \,\mu s$)
- IV. tau ($\tau = 291 \, \text{fs}$)

Motivate your choice. (5 points)

5 Decay Rate and Branching Ratio (16 Points)

Natural Lanthanum has an atomic weight of 138.91 and contains 0.09% of the isotope $^{138}_{57}$ La. This has two decay modes: $^{138}_{57}$ La $\rightarrow ^{138}_{58}$ Ce+ $e^- + \bar{\nu}_e$ (beta-decay) and $^{138}_{57}$ La+ $e^- \rightarrow ^{138}_{56}$ Ba^{*} + ν_e (electron capture), followed by the electromagnetic decay of the excited state $^{138}_{56}$ Ba^{*} $\rightarrow ^{138}_{56}$ Ba + γ (radiative decay). There are $7.8 \times 10^2 \beta$ particles emitted per second per kilogram of natural lanthanum and there are 50 photons emitted per 100 β^- particles. Estimate the mean lifetime of $^{138}_{57}$ La.

6 Parity Violation in a Scattering Reaction (16 Points)

Consider the reaction $e^+ + e^- \rightarrow \mu^+ + \mu^-$.

(a) What is the dominant mechanism for this reaction. Draw its lowest order Feynman Diagram (2 points).

The differential cross-section is given by

$$\left(\frac{d\sigma}{d\Omega}\right) = \frac{(\alpha\hbar c)^2}{4E_{CM}^2}(1+\cos^2\theta),$$

where E_{CM} is the center-of-mass energy and θ the angle between the outgoing muons and incoming electrons.

(b) Give the expression for the total cross-section (4 points).

The weak interaction also contributes to this process. In fact, it adds to above differential cross-section a term of the form

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Weak}} = \frac{(\alpha\hbar c)^2}{4E_{CM}^2} C_{\text{Weak}}\cos\theta,$$

where C_{Weak} is a constant.

(c) Show that $C_{\text{Weak}} \neq 0$ implies parity violation (3 points).

The total differential cross section becomes:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Total}} = \left(\frac{d\sigma}{d\Omega}\right) + \left(\frac{d\sigma}{d\Omega}\right)_{\text{Weak}}.$$
(1)

We can measure C_{Weak} by looking at the 'forward-backward' asymmetry

$$A_{fb} = \frac{\sigma_f - \sigma_b}{\sigma_f + \sigma_b},\tag{2}$$

where $\sigma_f(\sigma_b)$ is the total cross section in the forward (backward) direction defined by $0 \le \cos \theta \le 1 \ (-1 \le \cos \theta \le 0).$

- (d) Derive a relation between C_{Weak} and A_{fb} (5 points).
- (e) Can we learn something about C_{Weak} by measuring the total cross-section $\sigma = \sigma_f + \sigma_b$? Explain. (2 points)

Constants

Speed of light	С	$2.998 \cdot 10^{8}$	m/s
Planck constant	h	$4.136 \cdot 10^{-24}$	${\rm GeV}{\cdot}{\rm s}$
	$\hbar = \frac{h}{2\pi}$	$6.582 \cdot 10^{-25}$	GeV/c
Electron charge	<i>e</i> 2 <i>n</i>	$1.602 \cdot 10^{-19}$	С
Electron mass	m_e	0.510998918(44)	MeV/c^2
Proton mass	m_p	938.272029(80)	MeV/c^2
Neutron mass	$\dot{m_n}$	939.565360(81)	MeV/c^2
Deuteron mass	m_d	1875.61282(16)	MeV/c^2
Alpha particle mass	m_{lpha}	3727.37917(32)	MeV/c^2
Electron neutrino mass	m_{ν_e}	< 2.2	eV/c^2
Muon mass	m_{μ}	105.658369(9)	MeV/c^2
Tau mass	$m_{ au}$	1776.84(17)	MeV/c^2
Charged pion mass	$m_{\pi^{\pm}}$	139.57018(35)	MeV/c^2
Neutral pion mass	m_{π^0}	134.9766(6)	MeV/c^2
W^{\pm} -boson mass	m_W	80.403(29)	MeV/c^2
Z^0 -boson mass	m_W	91.1876(21)	MeV/c^2
Avogadro's number	N_A	$6.02214179(30) \cdot 10^{23}$	mol^{-1}

Semi-Emperical Mass Formula (Bethe-Weizsäcker)

$$\begin{split} M(A,Z) &= Nm_n + Zm_p - a_v A + a_s A^{2/3} + a_c \frac{Z^2}{A^{1/3}} + a_a \frac{(A-2Z)^2}{4A} + \frac{\delta}{A^{1/2}} \\ a_v &= 15.67 \quad \text{MeV}/c^2 \\ a_s &= 17.23 \quad \text{MeV}/c^2 \\ a_c &= 0.714 \quad \text{MeV}/c^2 \\ a_a &= 93.15 \quad \text{MeV}/c^2 \\ \delta &= 0 \quad \text{odd } A \\ &= -11.2 \quad \text{MeV}/c^2, \quad Z \text{ and } N \text{ even} \\ &= +11.2 \quad \text{MeV}/c^2, \quad Z \text{ and } N \text{ odd} \end{split}$$

Conversion Factors

Electronvolt	eV	$1.60217653(14) \cdot 10^{-19}$	J
Tesla	Т	$0.561 \cdot 1030$	$MeV/c^2 \cdot C \cdot s$
kilogram	kg	$5.60958896(48) \cdot 10^{35}$	eV/c^2
barn	b	$1 \cdot 10^{-28}$	m^2

Note: For some of the questions different approaches are possible, such that you may not necessarily need all of the given constants and equations. Unless specifically stated, the final results are sufficient if given to 2 significant figures (2 leading digits).

Isotope Table near $^{219}_{88}$ Ra

	8 4		86		8		90		ы
123	207Po	208At	209Rn	210Fr	211Ra	212Ac	213Th	214Pa	
	208Po	209At	210Rn	211Fr	212Ra	213Ac	214Th	215Pa	
125	209Po	210 A t	211Rn	212Fr	213Ra	214Ac	215Th	216Pa	217U
	210Po	211At	212Rn	213Fr	214Ra	215Ac	216Th	217Pa	218U
127	211Po	212At	213Rn	214Fr	215Ra	216Ac	217Th	218Pa	219U
	212Po	213At	214Rn	215Fr	216Ra	217Ac	218Th	219Pa	220U
129	213Po	214At	215Rn	216Fr	217Ra	218Ac	219Th	220Pa	221U
	214Po	215At	216Rn	217Fr	218Ra	219Ac	220Th	221Pa	222U
131	215Po	216At	217Rn	218Fr	219Ra	220 A.c	221Th	222Pa	223U
	216Po	217At	218Rn	219Fr	220Ra	221 A C	222Th	223Pa	224U
133	217Po	218At	219Rn	220Fr	221Ra	222 A c	223Th	224Pa	225U
	218Po	219At	220 R n	221Fr	222Ra	223Ac	224Th	225Pa	226U
135	219Po	220At	221Rn	222Fr	223Ra	224Ac	225Th	226Pa	227U
	220Po	221At	222Rn	223Fr	224Ra	225Ac	226Th	227Pa	228U
137		222At	223Rn	224Fr	225Ra	226Ac	227Th	228Pa	229U
		223At	224Rn	225Fr	226Ra	227 A c	228Th	229Pa	230U
z			225Rn	226Fr	227Ra	228 A .c	229Th	230Pa	231U

E.2.4 Low-Lying Baryons

				Dee	cay
Particle	I, J^P	Mass (MeV/c^2)	Mean lifetime or width	Mode	Fraction (%
Unflavor Quark co	ured states ontent:	s of light quarks (S	$= C = \tilde{B} = 0)$	(^E s\Valk) sed	a sha
N = (p,	n): p =	$uud, n = udd; \Delta^{-1}$	$^{++} = uuu, \ \Delta^+ = uud, \ \Delta$	$\Delta^0 = udd, \ \Delta^- = dd$	dd
р	$\frac{1}{2}, \frac{1}{2}^+$	938.27203(±8)	$>2.1 \times 10^{29} \text{ yr}$	Later of Cars	
n	$\frac{1}{2}, \frac{1}{2}^+$	939.56536(±8)	$8.857(\pm 8) \times 10^2$ s	$pe^-\bar{v}_e$	100
Δ	$\frac{3}{2}, \frac{3}{2}^+$	1232(±1)	118(±2) MeV	Νπ	100
Strange Quark co	baryons (λ ontent: Λ	$S = -1, \ C = \tilde{B} =$ = uds; \ \Sigma^+ = uus,		similarly for Σ^*s .	
Λ	$0, \frac{1}{2}^+$	1115.683(±6)	$2.631(\pm 20) \times 10^{-10}$	$p\pi^{-}$ $n\pi^{0}$	$63.9(\pm 5)$ 35.8(± 5)
Σ^+	$1, \frac{1}{2}^+$	1189.37(±7)	$8.018(\pm 26) \times 10^{-11}$	$p\pi^0$ $n\pi^+$	$51.57(\pm 30)$ $48.31(\pm 30)$
Σ^0	$1, \frac{1}{2}^+$	1192.642(±24)	$7.4(\pm7) \times 10^{-20}$	Λγ	100
Σ^{-}	$1, \frac{1}{2}^+$	1197.449(±30)	$1.479(\pm 11) \times 10^{-10}$	$n\pi^{-}$	99.848(±5)
Σ^{*+}	$1, \frac{3}{2}^+$	1382.8(±4)	35.8(±8) MeV	$\Lambda\pi$ $\Sigma\pi$	$87.0(\pm 15)$ 11.7(±15)
Σ^{*0}	$1, \frac{3}{2}^+$	$1383.7(\pm 10)$	36(±5) MeV	as above	
Σ^{*-}	$1, \frac{3}{2}^+$	1387.2(±5)	39.4(±21) MeV	as above	
Strange b Quark co	paryons (Southeast Ξ^0)	$S = -2, \ C = \tilde{B} = 0$ = uss, $\Xi^- = dss$,	0) similarly for Ξ^*s	21.6	
Ξ^0	$\frac{1}{2}, \frac{1}{2}^+$	1314.86(±20)	$2.90(\pm 9) \times 10^{-10}$ s	$\Lambda \pi^0$	99.525(±12)
Ξ^-	$\frac{1}{2}, \frac{1}{2}^+$	1321.71(±7)	$1.639(\pm 15) \times 10^{-10}$ s	$\Lambda \pi^{-}$	99.887(±35)
Ξ^{*0}	$\frac{1}{2}, \frac{3}{2}^+$	1531.80(±32)	9.1(±5) MeV	$\Lambda \bar{K}, \ \Sigma \bar{K}, \ \Xi \pi$	seen
Ξ^{*-1}	$\frac{1}{2}, \frac{3}{2}^+$	1535.0(±6)	9.9(±18) MeV	as above	
Strange b Quark co	earyons (S ntent: $Ω^-$	$C = -3, C = \tilde{B} = 0$ = sss))	a des autores de resta la ma trans d'actas, filiario atta trans	
Ω-	$0, \frac{3}{2}^+$	1672.45(±29)	$8.21(\pm 11) \times 10^{-11}$ s	$egin{array}{llllllllllllllllllllllllllllllllllll$	$67.8(\pm 7)$ 23.6(± 7) 8.6(± 4)

Data 381

				De	cay
Particle	I, J^P	Mass (MeV/c ²)	Mean lifetime or width	Mode	Fraction (%
Charmed Quark cor	baryons (S) the tent: Λ_c^+ is	$\tilde{S} = 0, \ C = +1, \ \tilde{B} = udc; \ \Sigma_c^{++} = uuc,$	$ \begin{aligned} &= 0) \\ &\Sigma_c^+ = udc, \ \Sigma_c^0 = ddc, \ s \end{aligned} $	similarly for Σ_c^*s	
$\overline{\Lambda_c^+}$	$0, \frac{1}{2}^+$	2286.46(±14)	$2.00(\pm 6) \times 10^{-13} \text{ s}$	$n + X$ $p + X$ $\Delta + X$ $\Sigma^{\pm} + X$ $e^{+} + X$	$50(\pm 16) \\ 50(\pm 16) \\ 35(\pm 11) \\ 10(\pm 5) \\ 4.5(\pm 17)$
Σ_c^{++}	$1, \frac{1}{2}^+$	2454.02(±18)	2.23(±30) MeV	$\Lambda_c^+\pi^+$	seen
Σ_c^+	$1, \frac{1}{2}^+$	2452.9(±4)	<4.6 MeV		
Σ_c^0	$1, \frac{1}{2}^+$	2453.76(±18)	2.2(±4) MeV		
Σ_c^{*++}	$1, \frac{3}{2}^+$	2518.4(±6)	14.9(±19) MeV	$\Lambda_c^+\pi^+$	seen
Σ_c^{*+}	$1, \frac{3}{2}^+$	2517.5(±23)	<1.7 MeV		
Σ_c^{*0}	$1, \frac{3}{2}^+$	2518.0(±5)	16.1(±21) MeV		
Charmed Quark cor	strange bantent: Ξ_c^+	ryons (S = $-1, -2,$ = usc, $\Xi_c^0 = dsc$, si	$C = +1, \ \tilde{B} = 0)$ milarly for $\Xi_c^* s; \ \Omega_c^0 = ss_c$	с	3.0
Ξ_{c}^{+}	$\frac{1}{2}, \frac{1}{2}^+$	2467.9(±4)	$4.42(\pm 26) \times 10^{-13}$ s	several seen	
Ξ0	$\frac{1}{2}, \frac{1}{2}^+$	2471.0(±4)	$1.12(\pm 4) \times 10^{-13}$ s	several seen	
Ω_c^0	$\frac{1}{2}, \frac{1}{2}^+$	2697.5(±26)	$6.9(\pm 1.2) \times 10^{-14}$ s	several seen	
Ξ*+	$\frac{1}{2}, \frac{3}{2}^+$	2646.6(±14)	<3.1MeV	$\Xi_c^0 \pi^+$	seen
Ξ_{c}^{*0}	$\frac{1}{2}, \frac{3}{2}^+$	2646.1(±12)	<5.5MeV	$\Xi_c^+\pi^-$	seen
Bottom b Quark co	aryons (S ntent: Λ_b^0 =	$= C = 0, \ \tilde{B} = -1)$ = udb, $\Xi_b^0 = usb, \ \Xi$	$Z_b^- = dsb$		10.27 1 1 3 1 4 70.27 1 3 1 3 1 4 71.27 1 4 5 71.27 1 5
Λ_b^0	$0, \frac{1}{2}^+$	5620.2(±16)	$1.383(\pm 48) \times 10^{-12}$ s	$\Lambda_c^+ + X$	9.1(±2.3)
$\Xi_{1}^{0,-}$	$\frac{1}{2}, \frac{1}{2}^+$	5792.4(土3)	$1.42(\pm 35) \times 10^{-12}$ s		

E.2.5 Low-Lying Mesons

In the J^{PC} column, the C quantum number applies to just the neutral states of an isospin multiplet.

				Dec	cay		
Particle I, J^{PC}		Mass (MeV/c ²)	Mean lifetime or width	Mode	Fraction (%)		
Unflavoured states of light quarks ($S = C = \tilde{B} = 0$) Quark content:							
I = 1	states, $u\bar{d}$, $\frac{1}{\sqrt{2}}$	$\overline{2}(u\bar{u}-d\bar{d}), \ d\bar{u}; I =$	= 0 states, $c_1(u\bar{u} - d\bar{d}) +$	$c_2 s \bar{s} (c_{1,2} \text{ are cons})$	stants)		
π^{\pm}	1,0-	139.57018(±35)	$2.6033(\pm 5) \times 10^{-8}$ s	$\pi^+ \nu_{\mu}$	99.98770(±4)		
π^0	$1,0^{-+}$	$134.9766(\pm 6)$	$8.4(\pm 6) \times 10^{-17}$ s	YY	98.798(±32)		
n	$0, 0^{-+}$	$547.853(\pm 24)$	$1.30(\pm 7)$ keV	VV	$39.31(\pm 20)$		
		. , ,		$\pi^0\pi^0\pi^0$	$32.56(\pm 23)$		
				$\pi^+\pi^-\pi^0$	$22.73(\pm 28)$		
				$\pi^+\pi^-\gamma$	$4.60(\pm 6)$		
ρ	1, 1	$775.49(\pm 34)$	149.4(±10) MeV	ππ	~100		
ω^0	0, 1	$782.65(\pm 12)$	8.49(±9) MeV	$\pi^+\pi^-\pi^0$	89.2(±7)		
				$\pi^0 \gamma$	$8.92(\pm 24)$		
η'	$0, 0^{-+}$	$957.66(\pm 24)$	$0.205(\pm 5)$ MeV	$\pi^+\pi^-\eta$	$44.6(\pm 14)$		
				$\pi^+\pi^-\gamma$	29.4(±9)		
				$\pi^0\pi^0\eta$	$20.7(\pm 12)$		
				ωγ	$3.02(\pm 31)$		
φ	$0, 1^{}$	$1019.455(\pm 20)$	$4.26(\pm 6) \text{ MeV}$	K^+K^-	49.2(±6)		
				$K_{I}^{0}K_{s}^{0}$	34.0(±5)		
				$\rho\pi + \pi^+\pi^-\pi^0$	15.25(±35)		

Strange mesons $(S = \pm 1, C = \tilde{B} = 0)$ Quark content: $K^+ = u\bar{s}, K^0 = d\bar{s}, \bar{K}^0 = s\bar{d}, K^- = s\bar{u}$, similarly for K^*s

K [±]	$\frac{1}{2}, 0^{-}$	493.667(±16)	$1.2380(\pm 21) \times 10^{-8}$ s	$\mu^+ \nu_{\mu}$	63.54(±14)
				$\pi^+\pi^0$ $\pi^+\pi^+\pi^-$	$20.68(\pm 13)$ 5 59(±4)
				$\pi^0 e^+ v_e$	$5.08(\pm 5)$
				$\pi^0 \mu^+ \nu_\mu$	3.35(±7)
K^0, K^0	$\frac{1}{2}, 0^{-}$	$497.614(\pm 24)$			
K_S^0	see note a		$8.953(\pm 5) \times 10^{-11}$ s	$\pi^+\pi^-$	69.20(±5)
				$\pi^0\pi^0$	$30.69(\pm 5)$
K_L^0	see note a		$5.114(\pm 21) \times 10^{-8}$ s	$\pi^{\pm}e^{\mp}\nu_e(\bar{\nu}_e)$	$40.55(\pm 12)$
				$\pi^{\pm}\mu^{\mp} u_{\mu}(ar{ u}_{\mu})$	$27.04(\pm7)$
				$\pi^0\pi^0\pi^0$	19.52(±12)
				$\pi^+\pi^-\pi^0$	$12.54(\pm 5)$
$K^{*\pm}$	$\frac{1}{2}, 1^{-}$	$891.66(\pm 26)$	50.8(±9) MeV	Κπ	~ 100
K^{*0}	$\frac{1}{2}, 1^{-}$	896.00(±25)	50.3(±6) MeV	Kπ	~ 100
				and a design of the second	

				Deca	ay
Particle	I, J^{PC}	Mass (MeV/c ²)	Mean lifetime or width	Mode	Fraction (%
Charmed n	nesons (S	$=0, C=\pm 1, \tilde{B}$	= 0)	(+ = () meens	
Quark cont	tent: D^+ :	$= cd, D^0 = c\bar{u}, D$	$u^0 = u\bar{c}, \ D^- = d\bar{c}, \ \text{simila}$	rly for D^*s	
D [±]	$\frac{1}{2}, 0^{-}$	1869.12(±20)	$1.040(\pm 7) \times 10^{-12}$ s	$K^0 + X$	ă (\$?
	2			plus	
				$\bar{K}^0 + X$	$61(\pm 5)$
				$K^- + X$	$25.7(\pm 14)$
				$\bar{K}^{*0} + X$	$23(\pm 5)$
				$e^+ + X$	$16.0(\pm 4)$
				$K^+ + X$	$5.9(\pm 8)$
00 00	1 0-	186484(+17)	$4.101(\pm 15) \times 10^{-13}$ s	$K^- + X$	54.9(+28)
<i>D</i> , <i>D</i>	$\frac{1}{2}, 0$	1004.04(±17)	$4.101(\pm 15) \times 10$ 3	$K^0 + X$	54.7(120)
				nlus	
				$\bar{\mathbf{v}}^0 + \mathbf{v}$	17(11)
				$\Lambda + \Lambda$ $\bar{v} * 0 + V$	$47(\pm 4)$
				$\Lambda^{+} + \Lambda^{+}$	$9(\pm 4)$
				e' + X	$0.53(\pm 17)$
1 1/1-18 R	1			K' + X	3.4(±4)
$D^{*\pm}$	$\frac{1}{2}, 1^{-}$	$2010.27(\pm 17)$	$96(\pm 22)$ keV	$D^0\pi^+$	$67.7(\pm 5)$
				$D^+\pi^0$	$30.7(\pm 5)$
				-0.0	
D^{*0}, \bar{D}^{*0}	$\frac{1}{2}, 1^{-}$	$2006.97(\pm 19)$	<2.1 MeV	$D^0\pi^0$	$61.9(\pm 29)$
D* ⁰ , <i>D</i> * ⁰	$\frac{1}{2}, 1^{-}$	2006.97(±19)	<2.1 MeV	$D^0\pi^0$ $D^0\gamma$	$61.9(\pm 29)$ $38.1(\pm 29)$
$D^{*0}, \overline{D}^{*0}$ Charmed s Quark cont	$\frac{1}{2}, 1^{-}$ trange metent: D_s^+	$2006.97(\pm 19)$ esons (S = C = ± = cs̄, D_s^- = sc̄, sin	<2.1 MeV 1, $\tilde{B} = 0$) milarly for D_s^*s	$D^0\pi^0$ $D^0\gamma$	61.9(±29) 38.1(±29)
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D^{\pm}_{*}	$\frac{1}{2}, 1^{-}$ trange met tent: D_s^+ $0, 0^-$	$2006.97(\pm 19)$ esons (S = C = ± = cs̄, D_s^- = sc̄, sin 1968.49(\pm 34)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for D_s^*s $5.00(\pm 7) \times 10^{-13}$ s	$ \frac{D^{0}\pi^{0}}{D^{0}\gamma} $ $ \frac{K^{0} + X}{K^{0} + X} $	$61.9(\pm 29)$ $38.1(\pm 29)$
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm}	$\frac{1}{2}, 1^{-}$ trange met tent: D_s^+ $0, 0^-$	2006.97(±19) esons ($S = C = \pm c\bar{s}, D_{\bar{s}} = s\bar{c}, sin$ 1968.49(±34)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for D_s^*s $5.00(\pm 7) \times 10^{-13}$ s	$ \frac{D^{0}\pi^{0}}{D^{0}\gamma} $ $ \frac{K^{0} + X}{plus} $	61.9(±29) 38.1(±29)
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm}	$\frac{1}{2}, 1^{-}$ trange met tent: D_s^+ $0, 0^-$	$2006.97(\pm 19)$ esons (S = C = ± = cs̄, D _s ⁻ = sc̄, sin 1968.49(±34)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for D_s^*s $5.00(\pm 7) \times 10^{-13}$ s	$ \frac{D^{0}\pi^{0}}{D^{0}\gamma} $ $ \frac{K^{0} + X}{plus} $ $ \overline{K^{0} + X} $	$61.9(\pm 29)$ $38.1(\pm 29)$ $39(\pm 28)$
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm}	$\frac{1}{2}, 1^{-}$ trange met tent: D_s^+ $0, 0^-$	$2006.97(\pm 19)$ esons (S = C = ± = cs̄, D_s^- = sc̄, sin 1968.49(±34)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for D_s^*s $5.00(\pm 7) \times 10^{-13}$ s	$ \begin{array}{c} D^{0}\pi^{0} \\ D^{0}\gamma \end{array} $ $ \begin{array}{c} K^{0} + X \\ plus \\ \bar{K}^{0} + X \\ K^{+} + X \end{array} $	$ \begin{array}{c} 61.9(\pm 29) \\ 38.1(\pm 29) \\ \end{array} $ $ \begin{array}{c} 39(\pm 28) \\ 20(\pm 16) \\ \end{array} $
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm}	$\frac{1}{2}$, 1 ⁻ trange metternt: D_s^+ = 0, 0 ⁻	$2006.97(\pm 19)$ esons (S = C = ± = cs̄, D _s ⁻ = sc̄, sin 1968.49(±34)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for D_s^*s $5.00(\pm 7) \times 10^{-13}$ s	$ \begin{array}{c} D^{0}\pi^{0} \\ D^{0}\gamma \\ \end{array} $ $ \begin{array}{c} K^{0} + X \\ plus \\ \overline{K}^{0} + X \\ K^{+} + X \\ \phi + X \end{array} $	$ \begin{array}{c} 61.9(\pm 29) \\ 38.1(\pm 29) \\ \end{array} $ $ \begin{array}{c} 39(\pm 28) \\ 20(\pm 16) \\ 18(\pm 13) \\ \end{array} $
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm}	$\frac{1}{2}, 1^{-}$ trange metternt: D_s^+ tent: D_s^+	$2006.97(\pm 19)$ esons (S = C = ± = cs̄, D_s^- = sc̄, sin 1968.49(±34)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for D_s^*s $5.00(\pm 7) \times 10^{-13}$ s	$ \begin{array}{c} D^{0}\pi^{0} \\ D^{0}\gamma \\ \end{array} $ $ \begin{array}{c} \overline{K^{0} + X} \\ plus \\ \overline{K^{0} + X} \\ K^{+} + X \\ \phi + X \\ K^{-} + X \end{array} $	$61.9(\pm 29) \\ 38.1(\pm 29) \\ 39(\pm 28) \\ 20(\pm 16) \\ 18(\pm 13) \\ 13(\pm $
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm}	$\frac{1}{2}, 1^{-}$ trange met tent: D_s^+ $0, 0^-$	$2006.97(\pm 19)$ esons (S = C = ± = cs̄, D_s^- = sc̄, sin 1968.49(±34)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for D_s^*s $5.00(\pm 7) \times 10^{-13}$ s	$D^{0}\pi^{0}$ $D^{0}\gamma$ $K^{0} + X$ $plus$ $\bar{K}^{0} + X$ $K^{+} + X$ $\phi + X$ $K^{-} + X$ $e^{+} + X$	$\begin{array}{c} 61.9(\pm 29) \\ 38.1(\pm 29) \\ \end{array}$ $\begin{array}{c} 39(\pm 28) \\ 20(\pm 16) \\ 18(\pm 13) \\ 13(\pm 13) \\ 8(\pm 7) \end{array}$
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm}	$\frac{1}{2}, 1^{-}$ trange met tent: D_s^+ $\overline{0, 0^-}$	$2006.97(\pm 19)$ esons (S = C = ± = cs̄, D_s^- = sc̄, sin 1968.49(±34)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for D_s^*s $\overline{5.00(\pm 7) \times 10^{-13} \text{ s}}$	$D^{0}\pi^{0}$ $D^{0}\gamma$ $K^{0} + X$ $plus$ $\bar{K}^{0} + X$ $K^{+} + X$ $\phi + X$ $K^{-} + X$ $e^{+} + X$ $\tau^{+}v_{-}$	$61.9(\pm 29) \\ 38.1(\pm 29) \\ 39(\pm 28) \\ 20(\pm 16) \\ 18(\pm 13) \\ 13(\pm 13) \\ 8(\pm 7) \\ 6.4(\pm 15) \\ \end{array}$
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm}	$\frac{1}{2}, 1^{-}$ trange met tent: D_s^+ $\overline{0, 0^-}$	$2006.97(\pm 19)$ esons (S = C = ± = cs̄, D_s^- = sc̄, sin 1968.49(±34) 2112.3(±5)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for D_s^*s $5.00(\pm 7) \times 10^{-13}$ s	$D^{0}\pi^{0}$ $D^{0}\gamma$ $K^{0} + X$ $plus$ $\bar{K}^{0} + X$ $K^{+} + X$ $\phi + X$ $K^{-} + X$ $e^{+} + X$ $\tau^{+}\nu_{\tau}$ $D^{+}\nu$	$61.9(\pm 29) \\ 38.1(\pm 29) \\ 38.1(\pm 29) \\ 20(\pm 16) \\ 18(\pm 13) \\ 13(\pm 13) \\ 8(\pm 7) \\ 6.4(\pm 15) \\ 94.2(\pm 7) \\ \end{array}$
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm}	$\frac{1}{2}, 1^{-}$ trange met tent: D_{s}^{+} $0, 0^{-}$ $0, 1^{-}$	$2006.97(\pm 19)$ esons ($S = C = \pm$ $= c\bar{s}, D_{\bar{s}} = s\bar{c}, sin$ 1968.49(±34) 2112.3(±5)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for $D_s^* s$ 5.00(±7) × 10 ⁻¹³ s <1.9 MeV	$D^{0}\pi^{0}$ $D^{0}\gamma$ $K^{0} + X$ $plus$ $\bar{K}^{0} + X$ $K^{+} + X$ $\phi + X$ $K^{-} + X$ $e^{+} + X$ $\tau^{+}\nu_{\tau}$ $D^{+}_{s}\gamma$ $D^{+}\pi^{0}$	$61.9(\pm 29) \\ 38.1(\pm 29) \\ 38.1(\pm 29) \\ 39(\pm 28) \\ 20(\pm 16) \\ 18(\pm 13) \\ 13(\pm 13) \\ 8(\pm 7) \\ 6.4(\pm 15) \\ 94.2(\pm 7) \\ 5.8(\pm 7) \\ \end{array}$
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm} $D_s^{*\pm}$	$\frac{1}{2}, 1^{-}$ trange met tent: D_{s}^{+} $0, 0^{-}$ $0, 1^{-}$	$2006.97(\pm 19)$ esons (S = C = ± = cs̄, D_s^- = sc̄, sin 1968.49(±34) 2112.3(±5)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for D_s^*s 5.00(± 7) × 10 ⁻¹³ s <1.9 MeV	$D^{0}\pi^{0}$ $D^{0}\gamma$ $K^{0} + X$ $plus$ $\bar{K}^{0} + X$ $K^{+} + X$ $\phi + X$ $K^{-} + X$ $e^{+} + X$ $\tau^{+}\nu_{\tau}$ $D^{+}_{s}\gamma$ $D^{+}_{s}\pi^{0}$	$61.9(\pm 29) \\ 38.1(\pm 29) \\ 38.1(\pm 29) \\ 20(\pm 16) \\ 18(\pm 13) \\ 13(\pm 13) \\ 8(\pm 7) \\ 6.4(\pm 15) \\ 94.2(\pm 7) \\ 5.8(\pm 7) \\ \end{array}$
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm} D_s^{\pm} Bottom me Quark cont	$\frac{1}{2}, 1^{-}$ trange motent: D_s^+ tent: D_s^+ $0, 0^{-}$ $0, 1^{-}$ esons (S = tent: B^+	$2006.97(\pm 19)$ esons ($S = C = \pm$ = $c\bar{s}$, $D_s^- = s\bar{c}$, sin 1968.49(±34) $2112.3(\pm 5)$ = $C = 0$, $\tilde{B} = \pm 1$) = $u\bar{b}$, $B^0 = d\bar{b}$, \bar{B}	<2.1 MeV 1, $\tilde{B} = 0$) milarly for D_s^*s $5.00(\pm 7) \times 10^{-13}$ s <1.9 MeV $^0 = b\bar{d}, B^- = b\bar{u}$, simila	$D^{0}\pi^{0}$ $D^{0}\gamma$ $\overline{K^{0} + X}$ $plus$ $\overline{K^{0} + X}$ $K^{+} + X$ $\phi + X$ $K^{-} + X$ $e^{+} + X$ $\tau^{+}\nu_{\tau}$ $D^{+}_{s}\gamma$ $D^{+}_{s}\pi^{0}$ rly for $B^{*}s$	$61.9(\pm 29) \\ 38.1(\pm 29) \\ 38.1(\pm 29) \\ 20(\pm 16) \\ 18(\pm 13) \\ 13(\pm 13) \\ 8(\pm 7) \\ 6.4(\pm 15) \\ 94.2(\pm 7) \\ 5.8(\pm 7) \\ \end{array}$
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm} $D_s^{*\pm}$ Bottom me Quark con B^{\pm}	$\frac{1}{2}, 1^{-}$ trange motor transfer to the formula of the form	$2006.97(\pm 19)$ esons ($S = C = \pm$ = $c\bar{s}$, $D_s^- = s\bar{c}$, sin 1968.49(±34) $2112.3(\pm 5)$ = $C = 0, \ \tilde{B} = \pm 1$) = $u\bar{b}, \ B^0 = d\bar{b}, \ \bar{B}$ 5279.15(±31)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for $D_s^* s$ 5.00(± 7) × 10 ⁻¹³ s <1.9 MeV $a^0 = b\bar{d}, B^- = b\bar{u}, \text{ simila}$ 1.638(± 11) × 10 ⁻¹² s	$ \frac{D^{0}\pi^{0}}{D^{0}\gamma} $ $ \frac{K^{0} + X}{plus} $ $ \overline{K^{0} + X} $ $ \frac{K^{+} + X}{K^{+} + X} $ $ \phi + X $ $ \frac{\phi + X}{K^{-} + X} $ $ e^{+} + X $ $ \frac{\tau^{+}\nu_{\tau}}{D_{s}^{+}\gamma} $ $ \frac{D_{s}^{+}\gamma}{D_{s}^{+}\pi^{0}} $ rly for $B^{*}s$ $ \overline{c}X$ (see note b)	$61.9(\pm 29) \\ 38.1(\pm 29) \\ 38.1(\pm 29) \\ 39(\pm 28) \\ 20(\pm 16) \\ 18(\pm 13) \\ 13(\pm 13) \\ 8(\pm 7) \\ 6.4(\pm 15) \\ 94.2(\pm 7) \\ 5.8(\pm 7) \\ 97(\pm 4) \\ 97(\pm 4)$
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm} $D_s^{*\pm}$ Bottom me Quark con B^{\pm}	$\frac{1}{2}, 1^{-}$ trange motor transfer to the formula of the form	$2006.97(\pm 19)$ esons ($S = C = \pm 1$ = $c\bar{s}$, $D_s^- = s\bar{c}$, sin 1968.49(±34) $2112.3(\pm 5)$ = $C = 0$, $\tilde{B} = \pm 1$) = $u\bar{b}$, $B^0 = d\bar{b}$, \bar{B} 5279.15(±31)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for $D_s^* s$ 5.00(±7) × 10 ⁻¹³ s <1.9 MeV $^0 = b\bar{d}, B^- = b\bar{u}, \text{ simila}$ 1.638(±11) × 10 ⁻¹² s	$ \frac{D^{0}\pi^{0}}{D^{0}\gamma} $ $ \frac{K^{0} + X}{plus} $ $ \overline{K^{0} + X} $ $ \frac{K^{+} + X}{K^{+} + X} $ $ \phi + X $ $ \frac{K^{-} + X}{k^{-} + X} $ $ e^{+} + X $ $ \frac{\tau^{+}v_{\tau}}{D_{s}^{+}\pi^{0}} $ $ rly for B^{*}s $ $ \overline{c}X (see note b) $ $ cX (see note b) $	$61.9(\pm 29) \\ 38.1(\pm 29) \\ 38.1(\pm 29) \\ 39(\pm 28) \\ 20(\pm 16) \\ 18(\pm 13) \\ 13(\pm 13) \\ 8(\pm 7) \\ 6.4(\pm 15) \\ 94.2(\pm 7) \\ 5.8(\pm 7) \\ 97(\pm 4) \\ 23.4(\pm 20) \\ \end{array}$
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm} $D_s^{*\pm}$ Bottom me Quark con B^{\pm}	$\frac{1}{2}, 1^{-}$ trange motor transfer to the formula of the form	$2006.97(\pm 19)$ esons ($S = C = \pm$ = $c\bar{s}$, $D_s^- = s\bar{c}$, sin 1968.49(±34) $2112.3(\pm 5)$ = $C = 0$, $\tilde{B} = \pm 1$) = $u\bar{b}$, $B^0 = d\bar{b}$, \bar{B} 5279.15(±31)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for $D_s^* s$ $5.00(\pm 7) \times 10^{-13} s$ <1.9 MeV $^0 = b\bar{d}, \ B^- = b\bar{u}, \text{ simila}$ 1.638(±11) × 10 ⁻¹² s	$ \frac{D^{0}\pi^{0}}{D^{0}\gamma} $ $ \frac{K^{0} + X}{plus} $ $ \overline{K^{0} + X} $ $ \frac{K^{+} + X}{\phi + X} $ $ \phi + X $ $ \frac{k^{-} + X}{\tau^{+}\nu_{\tau}} $ $ \frac{D^{+}_{s}\gamma}{D^{+}_{s}\pi^{0}} $ $ \frac{rly \text{ for } B^{*}s}{cX \text{ (see note b)}} $ $ \frac{cX \text{ (see note b)}}{cX \text{ (see note b)}} $	$61.9(\pm 29) \\ 38.1(\pm 29) \\ 38.1(\pm 29) \\ 20(\pm 16) \\ 18(\pm 13) \\ 13(\pm 13) \\ 8(\pm 7) \\ 6.4(\pm 15) \\ 94.2(\pm 7) \\ 5.8(\pm 7) \\ 97(\pm 4) \\ 23.4(\pm 20) \\ 10.99(\pm 28) \\ 1$
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm} D_s^{\pm} Bottom me Quark con B^{\pm} B^{\pm}	$\frac{1}{2}, 1^{-}$ trange mo tent: D_{s}^{+} $0, 0^{-}$ $0, 1^{-}$ $0, 1^{-}$ $0, 1^{-}$ $\frac{1}{2}, 0^{-}$ $\frac{1}{2}, 0^{-}$	$2006.97(\pm 19)$ esons ($S = C = \pm$ = $c\bar{s}$, $D_s^- = s\bar{c}$, sin 1968.49(±34) $2112.3(\pm 5)$ = $C = 0$, $\tilde{B} = \pm 1$) = $u\bar{b}$, $B^0 = d\bar{b}$, \bar{B} 5279.15(±31) 5279.53(±33)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for $D_s^* s$ $5.00(\pm 7) \times 10^{-13} s$ (4.9 MeV) $^{0} = b\bar{d}, B^{-} = b\bar{u}, similar$ $1.638(\pm 11) \times 10^{-12} s$ $1.530(\pm 9) \times 10^{-12} s$	$D^{0}\pi^{0}$ $D^{0}\gamma$ $\overline{K^{0} + X}$ $plus$ $\overline{K^{0} + X}$ $K^{+} + X$ $\phi + X$ $K^{-} + X$ $e^{+} + X$ $\tau^{+}\nu_{\tau}$ $D^{+}_{s}\gamma$ $D^{+}_{s}\pi^{0}$ $rly for B^{*}s$ $\overline{c}X (see note b)$ $\ell^{+}\nu_{\ell} + X$ $\overline{c}X (see note b)$	$61.9(\pm 29) \\ 38.1(\pm 29) \\ 38.1(\pm 29) \\ 20(\pm 16) \\ 18(\pm 13) \\ 13(\pm 13) \\ 8(\pm 7) \\ 6.4(\pm 15) \\ 94.2(\pm 7) \\ 5.8(\pm 7) \\ 97(\pm 4) \\ 23.4(\pm 20) \\ 10.99(\pm 28) \\ 95(\pm 5) \\ \end{array}$
D^{*0}, \bar{D}^{*0} Charmed s Quark cont D_s^{\pm} $D_s^{*\pm}$ Bottom me Quark con B^{\pm} B^0, \bar{B}^0	$\frac{1}{2}, 1^{-}$ trange motent: D_{s}^{+} tent: D_{s}^{+} $0, 0^{-}$ $0, 1^{-}$ $0, 1^{-}$ $0, 1^{-}$ $\frac{1}{2}, 0^{-}$ $\frac{1}{2}, 0^{-}$	$2006.97(\pm 19)$ esons ($S = C = \pm$ = $c\bar{s}$, $D_s^- = s\bar{c}$, sin 1968.49(±34) $2112.3(\pm 5)$ = $C = 0$, $\tilde{B} = \pm 1$) = $u\bar{b}$, $B^0 = d\bar{b}$, \bar{B} 5279.15(±31) 5279.53(±33)	<2.1 MeV 1, $\tilde{B} = 0$) milarly for $D_s^* s$ $5.00(\pm 7) \times 10^{-13} s$ (4.9 MeV) $c = b\bar{d}, B^- = b\bar{u}, similar$	$D^{0}\pi^{0}$ $D^{0}\gamma$ $\overline{K^{0} + X}$ $plus$ $\overline{K^{0} + X}$ $K^{+} + X$ $\phi + X$ $K^{-} + X$ $e^{+} + X$ $\tau^{+}\nu_{\tau}$ $D^{+}_{s}\gamma$ $D^{+}_{s}\gamma$ $D^{+}_{s}\gamma$ $rly for B^{*}s$ $\overline{c}X (see note b)$ $\ell^{+}\nu_{\ell} + X$ $\overline{c}X (see note b)$ $c X (see note b)$	$61.9(\pm 29)$ $38.1(\pm 29)$ $39(\pm 28)$ $20(\pm 16)$ $18(\pm 13)$ $13(\pm 13)$ $8(\pm 7)$ $6.4(\pm 15)$ $94.2(\pm 7)$ $5.8(\pm 7)$ $97(\pm 4)$ $23.4(\pm 20)$ $10.99(\pm 28)$ $95(\pm 5)$ $24.6(\pm 3)$

Particle	I, J^{PC}	Mass (MeV/c^2)	Mean lifetime or width	Mode	Fraction (%)
Bottom str Quark cont	ange meso tent: $B_s^0 =$	ons $(S = \mp 1, C = 0$ $s\bar{b}, \ \bar{B}_s^0 = b\bar{s}$), $\tilde{B} = \pm 1$)	m (3 = 1, 6 = 9 = m, 9	
$\overline{B_s^0, \bar{B}_s^0}$	0, 0-	5366.3(±6)	$1.470(\pm 26) \times 10^{-12}$ s	$D_{s}^{-} + X$ $D_{s}^{-}\ell^{+}\nu_{\ell} + X$	93(±25) 7.9(±24)
Bottom cha Quark cont	armed mesternt: $B_c^+ =$	$\cos (S = 0, \ \tilde{B} = C)$ $= c\bar{b}, \ B_c^- = b\bar{c}$	$C = \pm 1$)		
B_c^{\pm}	0, 0-	6276(±4)	$4.6(\pm 17) \times 10^{-13} \text{ s}$	several seen	
$c\bar{c}$ mesons					
$\eta_c(1S)$	$0, 0^{-+}$	2980.3(±12)	26.7(±30) MeV	$K \bar{K} \pi$ $\eta \pi \pi$	7.2(\pm 12) 4.9(\pm 18) 4.1(\pm 17)
$J/\psi(1S)$	0, 1	3096.916(11)	93.2(±21) keV	hadrons e^+e^- $\mu^+\mu^-$	$87.7(\pm 5)$ $5.94(\pm 6)$ $5.93(\pm 6)$
$b\bar{b}$ mesons	G.	1 and a state of the state of t	VIN S.C. OLE	caestori	
$\eta_b(1S)$ $\Upsilon(1S)$	0, 0 ⁻⁺ 0, 1	9388.9(±28) 9460.30(±26)	? 54.02(±125) keV	$\begin{array}{l} \eta' + X \\ \ell^+ \ell^- \text{ all } \ell \end{array}$	2.94(±24) 7.46(±36)

^{*a*} These states are discussed in Section 6.6.1. ^{*b*} \bar{c} stands for any state containing a \bar{c} quark and c stands for any state containing a c quark.