Exam Subatomic Physics Thursday, April 7 2011, 9:00-12:00

Gerco Onderwater
Rijksuniversiteit Groningen / KVI

Before you start, read the following:

- Write your name and student number on top of each page of your exam;
- Illegible writing will be graded as incorrect;
- This exam contains several appendices;
- Final grade $=(10+$ sum of points $) / 10 ;$
- Good luck!

1 Allowed and Forbidden Processes (16 Points)

Examine the following processes carefully, and state for each one whether it is possible or impossible, according to the Standard Model. In the former case, state which interaction(s) is(are) responsible - strong, electromagnetic or weak; in the latter case, cite a conservation law that prevents it from occurring. When unambiguous, the charge is not indicated, thus γ, Λ, and n are neutral; p is positive, e is negative, etc. (1 point per process)
(a) $\pi^{-} \rightarrow \pi^{0}+e^{-}+\bar{\nu}_{e}$
(i) $\bar{p} \rightarrow \bar{n}+e^{-}+\bar{\nu}_{e}$
(b) $\gamma+p \rightarrow \pi^{+}+n$
(j) $Z^{0} \rightarrow \nu_{e}+\bar{\nu}_{\mu}$
(c) $\Delta^{-} \rightarrow p+\pi^{-}$
(k) $e^{-}+\bar{\nu}_{e} \rightarrow \bar{t}+b$
(d) $\Lambda \rightarrow n+\gamma$
(1) $\Lambda+p \rightarrow K^{-}+p+p$
(e) $D^{-} \rightarrow K^{+}+\pi^{-}+\pi^{-}$
(m) $p+\bar{p} \rightarrow \pi^{+}+\pi^{-}+\pi^{0}$
(f) $\nu_{\tau} \rightarrow \nu_{e}+\gamma$
(n) $\mu^{-} \rightarrow e^{+}+e^{-}+e^{-}+\nu_{e}+\nu_{\mu}$
(g) $\pi^{-}+p \rightarrow n+e^{+}+e^{-}$
(o) $\mu^{+}+\tau^{-} \rightarrow \gamma+\gamma+\gamma$
(h) $Z^{0} \rightarrow \gamma+\gamma$
(p) $J / \psi \rightarrow \nu_{\tau}+\bar{\nu}_{\tau}$

2 Nuclear Masses (16 Points)

Consider the Bethe-Weizsäcker semi-emperical mass formula (SEMF) and the isotope table (see Appendices).
(a) Briefly explain each of the terms in the SEMF. Comment on the A, N and Z dependence. (3 points).
(b) Give the expression for the binding energy per nucleon. Use the result to argue why the most strongly bound isotopes generally have $N>Z$. Hint: write the binding energy as a function of Z for fixed A and show that the maximum has $Z<A / 2$. You may use $\delta=0$. (5 points)
(c) If ${ }_{88}^{219} \mathrm{Ra}$ would decay via α, β^{-}or β^{+}-emission, what would in each case be the daughter nucleus? (3 points)
(d) Which of the three decay modes in (c) are allowed? Why (not)? Which of the allowed decay modes will dominate (motivate)? Note: take m_{α} from the appendix and use $m_{e^{ \pm}}=0$. (5 points)

3 Descriptions (16 Points)

Explain what is meant by the following terms (in relation to subatomic physics). Be specific! (2 points each):
(a) weak interaction
(e) Cabbibo angle
(b) cross section
(f) coupling constant
(c) form factor
(g) isotope
(d) hadron
(h) color

4 Mass Measurement (10 Points)

The mass of fundamental particles can be measured using several methods. Three of them are: magnetic spectrometer, Penning trap and kinematic analysis.
(a) For each method explain why it is sensitive to the mass of a particle. (5 points)
(b) Which method is preferred to measure the mass of :
I. proton
II. neutron
III. muon $(\tau=2.2 \mu \mathrm{~s})$
IV. $\operatorname{tau}(\tau=291 \mathrm{fs})$

Motivate your choice. (5 points)

5 Decay Rate and Branching Ratio (16 Points)

Natural Lanthanum has an atomic weight of 138.91 and contains 0.09% of the isotope ${ }_{57}^{138} \mathrm{La}$. This has two decay modes: ${ }_{57}^{138} \mathrm{La} \rightarrow{ }_{58}^{138} \mathrm{Ce}+e^{-}+\bar{\nu}_{e}$ (beta-decay) and ${ }_{57}^{138} \mathrm{La}+e^{-} \rightarrow{ }_{56}^{138}$ $\mathrm{Ba}^{*}+\nu_{e}$ (electron capture), followed by the electromagnetic decay of the excited state ${ }_{56}^{138} \mathrm{Ba}^{*} \rightarrow{ }_{56}^{138} \mathrm{Ba}+\gamma$ (radiative decay). There are $7.8 \times 10^{2} \beta$ particles emitted per second per kilogram of natural lanthanum and there are 50 photons emitted per $100 \beta^{-}$particles. Estimate the mean lifetime of ${ }_{57}^{138} \mathrm{La}$.

6 Parity Violation in a Scattering Reaction (16 Points)

Consider the reaction $e^{+}+e^{-} \rightarrow \mu^{+}+\mu^{-}$.
(a) What is the dominant mechanism for this reaction. Draw its lowest order Feynman Diagram (2 points).

The differential cross-section is given by

$$
\left(\frac{d \sigma}{d \Omega}\right)=\frac{(\alpha \hbar c)^{2}}{4 E_{C M}^{2}}\left(1+\cos ^{2} \theta\right),
$$

where $E_{C M}$ is the center-of-mass energy and θ the angle between the outgoing muons and incoming electrons.
(b) Give the expression for the total cross-section (4 points).

The weak interaction also contributes to this process. In fact, it adds to above differential cross-section a term of the form

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\text {Weak }}=\frac{(\alpha \hbar c)^{2}}{4 E_{C M}^{2}} C_{\text {Weak }} \cos \theta,
$$

where $C_{\text {Weak }}$ is a constant.
(c) Show that $C_{\text {Weak }} \neq 0$ implies parity violation (3 points).

The total differential cross section becomes:

$$
\begin{equation*}
\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{Total}}=\left(\frac{d \sigma}{d \Omega}\right)+\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{Weak}} \tag{1}
\end{equation*}
$$

We can measure $C_{\text {Weak }}$ by looking at the 'forward-backward' asymmetry

$$
\begin{equation*}
A_{f b}=\frac{\sigma_{f}-\sigma_{b}}{\sigma_{f}+\sigma_{b}} \tag{2}
\end{equation*}
$$

where $\sigma_{f}\left(\sigma_{b}\right)$ is the total cross section in the forward (backward) direction defined by $0 \leq \cos \theta \leq 1(-1 \leq \cos \theta \leq 0)$.
(d) Derive a relation between $C_{\text {Weak }}$ and $A_{f b}$ (5 points).
(e) Can we learn something about $C_{\text {Weak }}$ by measuring the total cross-section $\sigma=\sigma_{f}+\sigma_{b}$? Explain. (2 points)

Constants

Speed of light	c	$2.998 \cdot 10^{8}$	$\mathrm{~m} / \mathrm{s}$
Planck constant	h	$4.136 \cdot 10^{-24}$	$\mathrm{GeV} \cdot \mathrm{s}$
	$\hbar=\frac{h}{2 \pi}$	$6.582 \cdot 10^{-25}$	GeV / c
Electron charge	e	$1.602 \cdot 10^{-19}$	C
Electron mass	m_{e}	$0.510998918(44)$	MeV / c^{2}
Proton mass	m_{p}	$938.272029(80)$	MeV / c^{2}
Neutron mass	m_{n}	$939.565360(81)$	MeV / c^{2}
Deuteron mass	m_{d}	$1875.61282(16)$	MeV / c^{2}
Alpha particle mass	m_{α}	$3727.37917(32)$	MeV / c^{2}
Electron neutrino mass	$m_{\nu_{e}}$	<2.2	eV / c^{2}
Muon mass	m_{μ}	$105.658369(9)$	MeV / c^{2}
Tau mass	m_{τ}	$1776.84(17)$	MeV / c^{2}
Charged pion mass	$m_{\pi^{ \pm}}$	$139.57018(35)$	MeV / c^{2}
Neutral pion mass	$m_{\pi^{0}}$	$134.9766(6)$	MeV / c^{2}
$W^{ \pm}$-boson mass	m_{W}	$80.403(29)$	MeV / c^{2}
Z^{0}-boson mass	m_{W}	$91.1876(21)$	MeV / c^{2}
Avogadro's number	N_{A}	$6.02214179(30) \cdot 10^{23}$	$\mathrm{~mol}{ }^{-1}$

Semi-Emperical Mass Formula (Bethe-Weizsäcker)

$$
\begin{aligned}
& M(A, Z)=N m_{n}+ Z m_{p}-a_{v} A+a_{s} A^{2 / 3}+a_{c} \frac{Z^{2}}{A^{1 / 3}}+a_{a} \frac{(A-2 Z)^{2}}{4 A}+\frac{\delta}{A^{1 / 2}} \\
& a_{v}=15.67 \mathrm{MeV} / c^{2} \\
& a_{s}=17.23 \mathrm{MeV} / c^{2} \\
& a_{c}=0.714 \mathrm{MeV} / c^{2} \\
& a_{a}=93.15 \mathrm{MeV} / c^{2} \\
& \delta=0 \\
& \mathrm{odd} A \\
&=-11.2 \mathrm{MeV} / c^{2}, \quad Z \text { and } N \text { even } \\
&=+11.2 \mathrm{MeV} / c^{2}, \quad Z \text { and } N \text { odd }
\end{aligned}
$$

Conversion Factors

Electronvolt	eV	$1.60217653(14) \cdot 10^{-19}$	J
Tesla	T	$0.561 \cdot 1030$	$\mathrm{MeV} / \mathrm{c}^{2} \cdot \mathrm{C} \cdot \mathrm{s}$
kilogram	kg	$5.60958896(48) \cdot 10^{35}$	$\mathrm{eV} / \mathrm{c}^{2}$
barn	b	$1 \cdot 10^{-28}$	$\mathrm{~m}^{2}$

Note: For some of the questions different approaches are possible, such that you may not necessarily need all of the given constants and equations. Unless specifically stated, the final results are sufficient if given to 2 significant figures (2 leading digits).

Isotope Table near ${ }_{88}^{219} \mathbf{R a}$

$\stackrel{\square}{\circ}$		$\stackrel{\text { ® }}{ }$		®		\％			N
岕	N	$\begin{aligned} & \text { N} \\ & \text { 罦 } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{\mathrm{N}}{\underset{\sim}{3}}$	$\begin{aligned} & N \\ & \stackrel{N}{4} \\ & \hline \end{aligned}$	
	$\begin{aligned} & \text { No } \\ & \text { 然 } \end{aligned}$	N	$\begin{aligned} & N \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{N}{5}$	$\begin{aligned} & \mathrm{N} \\ & \text { No } \end{aligned}$		$\begin{gathered} \mathrm{N} \\ \stackrel{N}{B} \end{gathered}$	$\begin{aligned} & N \\ & \text { N } \\ & \text { N } \end{aligned}$	
N	$\begin{aligned} & \text { N } \\ & \text { O్ } \end{aligned}$	N	$\begin{aligned} & \mathrm{N} \\ & \stackrel{y}{9} \end{aligned}$	N		$\begin{aligned} & \mathrm{N} \\ & \stackrel{N}{5} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { y } \\ & \text { 符 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 券 } \end{aligned}$	N
	$\begin{aligned} & N \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\stackrel{N}{4}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & N \\ & N \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \text { N } \\ & 0,0 \end{aligned}$	$\begin{aligned} & N \\ & H \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 9 \end{aligned}$	N	－
$\stackrel{\text { N }}{\sim}$	$\stackrel{N}{5}$	N	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \hline ⿱ ⿴ 囗 ⿰ 丨 丨 ⿱ 丶 万 ⿱ ⿰ ㇒ 一 乂 心 ~ \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \text { 易 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 带 } \end{aligned}$	宮
	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 苞 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 券 } \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & \text { N} \\ & \text { N} \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & N_{y}^{2} \\ & \end{aligned}$	N
$\stackrel{\stackrel{\rightharpoonup}{6}}{0}$	$\begin{aligned} & \stackrel{N}{\mathrm{y}} \\ & \text { N } \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & \text { N } \\ & \text { 管 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	N	$\begin{aligned} & \text { N } \\ & \stackrel{N}{5} \\ & \stackrel{y}{5} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \stackrel{y}{3} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 檜 } \end{aligned}$	N
	$$	$\begin{aligned} & \text { N } \\ & \text { 星 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 罣 } \end{aligned}$	N	N	$\begin{aligned} & \text { N} \\ & \stackrel{0}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 合 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { H } \end{aligned}$	N
$\stackrel{\stackrel{\rightharpoonup}{*}}{\square}$	$\begin{aligned} & \text { y } \\ & \text { y } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \hline \end{aligned}$	$\underset{\sim}{N}$	$\begin{aligned} & \text { N } \\ & \text { NOM } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 帯 } \end{aligned}$	N	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	N
	$\begin{aligned} & \text { N } \\ & \text { 驾 } \end{aligned}$	N	$\begin{aligned} & \text { N } \\ & \text { 罣 } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { Non } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { W } \end{aligned}$	N
$\stackrel{\text { 岕 }}{ }$	N	$\begin{aligned} & N \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { Non } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 匈 } \end{aligned}$	$\begin{aligned} & N \\ & N \\ & \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 蒌 } \end{aligned}$	N
	$\begin{aligned} & \stackrel{N}{0} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{N}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\underset{\sim}{N}$	$\begin{aligned} & \tilde{N} \\ & \tilde{y y} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { n } \end{aligned}$	N
$\stackrel{\text { w }}{\text { w }}$	$\begin{aligned} & \text { N } \\ & \text { 䣮 } \end{aligned}$	N	$\begin{aligned} & \text { N } \\ & \text { N్ల } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \tilde{W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { 符 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	N
	$\begin{aligned} & \text { N } \\ & \text { 另 } \end{aligned}$	N	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N్M } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 巻 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { yै } \end{aligned}$	N
$\stackrel{\text { w }}{\sim}$		N	$\begin{aligned} & \text { N } \\ & \text { 䍖 } \end{aligned}$	N	$\begin{aligned} & \text { N } \\ & \text { Non } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Nun } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { W/ } \\ & \hline \end{aligned}$	N
		$$	$\begin{aligned} & \text { N } \\ & \text { 会 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { 带 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \hline \end{aligned}$	篔	$\begin{aligned} & \text { N } \\ & \text { Wg } \end{aligned}$	N
z			$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { 等 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \tilde{W} \end{aligned}$	N		$\begin{aligned} & \text { N } \\ & \text { 苞 } \end{aligned}$	$\begin{aligned} & \text { No } \\ & 0 \\ & \hline \end{aligned}$	管

E.2.4 Low-Lying Baryons

Particle	I, J^{P}	Mass ($\mathrm{MeV} / \mathrm{c}^{2}$)	Mean lifetime or width	Decay	
				Mode	Fraction (\%)
Unflavoured states of light quarks ($S=C=\tilde{B}=0$) Quark content:					
$N=(p, n): p=u u d, n=u d d ; \Delta^{++}=u u u, \Delta^{+}=u u d, \Delta^{0}=u d d, \Delta^{-}=d d d$					
p	$\frac{1}{2}, \frac{1}{2}^{+}$	938.27203($\pm 8)$	$>2.1 \times 10^{29} \mathrm{yr}$		
n	$\frac{1}{2}, \frac{1}{2}+$	939.56536($\pm 8)$	$8.857(\pm 8) \times 10^{2} \mathrm{~s}$	$p e^{-} \bar{\nu}_{e}$	100
Δ	$\frac{3}{2}, \frac{3}{2}+$	1232($\pm 1)$	$118(\pm 2) \mathrm{MeV}$	$N \pi$	100

Strange baryons ($S=-1, C=\tilde{B}=0$)
Quark content: $\Lambda=u d s ; \Sigma^{+}=u u s, \Sigma^{0}=u d s, \Sigma^{-}=d d s$, similarly for $\Sigma^{*} s$.

Λ	$0, \frac{1}{2}^{+}$	$1115.683(\pm 6)$	$2.631(\pm 20) \times 10^{-10}$	$p \pi^{-}$ $n \pi^{0}$	$63.9(\pm 5)$ $35.8(\pm 5)$
Σ^{+}	$1, \frac{1}{2}^{+}$	$1189.37(\pm 7)$	$8.018(\pm 26) \times 10^{-11}$	$p \pi^{0}$	$n 1.57(\pm 30)$ $n \pi^{+}$
Σ^{0}	$1, \frac{1}{2}^{+}$	$1192.642(\pm 24)$	$7.4(\pm 7) \times 10^{-20}$	$\Lambda \gamma$	$48.31(\pm 30)$
Σ^{-}	$1, \frac{1}{2}^{+}$	$1197.449(\pm 30)$	$1.479(\pm 11) \times 10^{-10}$	$n \pi^{-}$	100
Σ^{*+}	$1, \frac{3}{2}^{+}$	$1382.8(\pm 4)$	$35.8(\pm 8) \mathrm{MeV}$	$\Lambda \pi$	$99.848(\pm 5)$
$\Sigma^{* 0}$	$1, \frac{3}{2}^{+}$	$1383.7(\pm 10)$	$36(\pm 5) \mathrm{MeV}$	$\Sigma \pi$	$87.0(\pm 15)$
Σ^{*-}	$1, \frac{3}{2}^{+}$	$1387.2(\pm 5)$	$39.4(\pm 21) \mathrm{MeV}$	as above	$11.7(\pm 15)$

Strange baryons ($S=-2, C=\tilde{B}=0$)
Quark content: $\Xi^{0}=u s s, \Xi^{-}=d s s$, similarly for $\Xi^{*} s$

Ξ^{0}	$\frac{1}{2}, \frac{1}{2}^{+}$	$1314.86(\pm 20)$	$2.90(\pm 9) \times 10^{-10} \mathrm{~s}$	$\Lambda \pi^{0}$	$99.525(\pm 12)$
Ξ^{-}	$\frac{1}{2}, \frac{1^{+}}{2}$	$1321.71(\pm 7)$	$1.639(\pm 15) \times 10^{-10} \mathrm{~s}$	$\Lambda \pi^{-}$	$99.887(\pm 35)$
$\Xi^{* 0}$	$\frac{1}{2}, \frac{3^{+}}{2}$	$1531.80(\pm 32)$	$9.1(\pm 5) \mathrm{MeV}$	$\Lambda \bar{K}, \Sigma \bar{K}, \Xi \pi$	seen
Ξ^{*-}	$\frac{1}{2}, \frac{3^{+}}{2}$	$1535.0(\pm 6)$	$9.9(\pm 18) \mathrm{MeV}$	as above	

Strange baryons ($S=-3, C=\tilde{B}=0$)
Quark content: $\Omega^{-}=$sss

Ω^{-}	$0, \frac{3}{2}^{+}$	$1672.45(\pm 29)$	$8.21(\pm 11) \times 10^{-11} \mathrm{~s}$	ΛK^{-}
			$\Xi^{0} \pi^{-}$	$67.8(\pm 7)$
		$\Xi^{-} \pi^{0}$	$23.6(\pm 7)$	
			$8.6(\pm 4)$	

			Decay		
			Masticle $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	Mean lifetime or width	Mode

Charmed baryons ($S=0, C=+1, \tilde{B}=0$)
Quark content: $\Lambda_{c}^{+}=u d c ; \Sigma_{c}^{++}=u u c, \Sigma_{c}^{+}=u d c, \Sigma_{c}^{0}=d d c$, similarly for $\Sigma_{c}^{*} s$

Λ_{c}^{+}	$0, \frac{1}{2}^{+}$	$2286.46(\pm 14)$	$2.00(\pm 6) \times 10^{-13} \mathrm{~s}$	$n+X$	$50(\pm 16)$
				$50(\pm 16)$	
				$\Lambda+X$	$35(\pm 11)$
			$\Sigma^{ \pm}+X$	$10(\pm 5)$	
			$e^{+}+X$	$4.5(\pm 17)$	
Σ_{c}^{++}	$1, \frac{1}{2}^{+}$	$2454.02(\pm 18)$	$2.23(\pm 30) \mathrm{MeV}$	$\Lambda_{c}^{+} \pi^{+}$	seen
Σ_{c}^{+}	$1, \frac{1}{2}^{+}$	$2452.9(\pm 4)$	$<4.6 \mathrm{MeV}$		
Σ_{c}^{0}	$1, \frac{1}{2}^{+}$	$2453.76(\pm 18)$	$2.2(\pm 4) \mathrm{MeV}$		
Σ_{c}^{*++}	$1, \frac{3}{2}^{+}$	$2518.4(\pm 6)$	$14.9(\pm 19) \mathrm{MeV}$	$\Lambda_{c}^{+} \pi^{+}$	seen
Σ_{c}^{*+}	$1, \frac{3}{2}^{+}$	$2517.5(\pm 23)$	$<1.7 \mathrm{MeV}$		
$\Sigma_{c}^{* 0}$	$1, \frac{3}{2}^{+}$	$2518.0(\pm 5)$	$16.1(\pm 21) \mathrm{MeV}$		

Charmed strange baryons ($S=-1,-2, C=+1, \tilde{B}=0$)
Quark content: $\Xi_{c}^{+}=u s c, \Xi_{c}^{0}=d s c$, similarly for $\Xi_{c}^{*} s ; \Omega_{c}^{0}=s s c$

Ξ_{c}^{+}	$\frac{1}{2}, \frac{1}{2}^{+}$	$2467.9(\pm 4)$	$4.42(\pm 26) \times 10^{-13} \mathrm{~s}$	several seen	
Ξ_{c}^{0}	$\frac{1}{2}, \frac{1}{2}^{+}$	$2471.0(\pm 4)$	$1.12(\pm 4) \times 10^{-13} \mathrm{~s}$	several seen	
Ω_{c}^{0}	$\frac{1}{2}, \frac{1}{2}^{+}$	$2697.5(\pm 26)$	$6.9(\pm 1.2) \times 10^{-14} \mathrm{~s}$	several seen	
Ξ_{c}^{*+}	$\frac{1}{2}, \frac{3}{2}^{+}$	$2646.6(\pm 14)$	$<3.1 \mathrm{MeV}$	$\Xi_{c}^{0} \pi^{+}$	seen
$\Xi_{c}^{* 0}$	$\frac{1}{2}, \frac{3}{2}^{+}$	$2646.1(\pm 12)$	$<5.5 \mathrm{MeV}$	$\Xi_{c}^{+} \pi^{-}$	seen

Bottom baryons ($S=C=0, \tilde{B}=-1$)
Quark content: $\Lambda_{b}^{0}=u d b, \Xi_{b}^{0}=u s b, \Xi_{b}^{-}=d s b$

Λ_{b}^{0}	$0, \frac{1}{2}^{+}$	$5620.2(\pm 16)$	$1.383(\pm 48) \times 10^{-12} \mathrm{~s}$	$\Lambda_{c}^{+}+X$	$9.1(\pm 2.3)$
$\Xi_{b}^{0,-}$	${\frac{1}{2}, \frac{1}{2}^{+}}^{+}$	$5792.4(\pm 3)$	$1.42(\pm 35) \times 10^{-12} \mathrm{~s}$		

E．2．5 Low－Lying Mesons

In the $J^{P C}$ column，the C quantum number applies to just the neutral states of an isospin multiplet．

				De	
Particle	$I, J^{P C}$	Mass（ $\mathrm{MeV} / \mathrm{c}^{2}$ ）	Mean lifetime or width	Mode	Fraction（\％）
Unflavoured states of light quarks（ $S=C=\tilde{B}=0$ ） Quark content：					
$I=1$ states，$u \bar{d}, \frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}), d \bar{u} ; I=0$ states，$c_{1}(u \bar{u}-d \bar{d})+c_{2} s \bar{s}\left(c_{1,2}\right.$ are constants）					
$\pi^{ \pm}$	$1,0^{-}$	139．57018（ ± 35 ）	$2.6033(\pm 5) \times 10^{-8} \mathrm{~s}$	$\pi^{+} \nu_{\mu}$	99．98770（土4）
π^{0}	$1,0^{-+}$	134．9766（ $\pm 6)$	$8.4(\pm 6) \times 10^{-17} \mathrm{~s}$	$\gamma \gamma$	98．798（ ± 32 ）
η	$0,0^{-+}$	547．853（土24）	$1.30(\pm 7) \mathrm{keV}$		$39.31(\pm 20)$
				$\pi^{0} \pi^{0} \pi^{0}$	32.56 （ $\pm 23)$
				$\pi^{+} \pi^{-} \pi^{0}$	22．73（土28）
				$\pi^{+} \pi^{-} \gamma$	4．60（土6）
	$1,1^{--}$	775．49（ $\pm 34)$	149．4（土10）MeV	$\pi \pi$	~ 100
ω^{0}	$0,1-$	782．65（ $\pm 12)$	8．49（ $\pm 9) \mathrm{MeV}$	$\pi^{+} \pi^{-} \pi^{0}$	89．2（ $\pm 7)$
				$\pi^{0} \gamma$	$8.92(\pm 24)$
η^{\prime}	$0,0^{-+}$	957．66（ $\pm 24)$	0．205（ $\pm 5) \mathrm{MeV}$	$\pi^{+} \pi^{-} \eta$	44．6 \pm（14）
				$\pi^{+} \pi^{-} \gamma$	$29.4(\pm 9)$
				$\pi^{0} \pi^{0} \eta$	$20.7(\pm 12)$
				$\omega \gamma$	$3.02(\pm 31)$
ϕ	$0,1^{--}$	1019．455（ $\pm 20)$	4.26 （ $\pm 6) \mathrm{MeV}$	$K^{+} K^{-}$	49．2（ $\pm 6)$
				$K_{L}^{0} K_{S}^{0}$	34．0（ $\pm 5)$
				$\rho \pi+\pi^{+} \pi^{-} \pi^{0}$	15．25（ $\pm 35)$

Strange mesons（ $S= \pm 1, C=\tilde{B}=0$ ）
Quark content：$K^{+}=u \bar{s}, K^{0}=d \bar{s}, \bar{K}^{0}=s \bar{d}, K^{-}=s \bar{u}$ ，similarly for $K^{*} s$

$K^{ \pm}$	$\frac{1}{2}, 0^{-}$	493．667（ $\pm 16)$	$1.2380(\pm 21) \times 10^{-8} \mathrm{~s}$	$\begin{aligned} & \mu^{+} v_{\mu} \\ & \pi^{+} \pi^{0} \\ & \pi^{+} \pi^{+} \pi^{-} \\ & \pi^{0} e^{+} v_{e} \\ & \pi^{0} \mu^{+} v_{\mu} \end{aligned}$	$\begin{aligned} & 63.54(\pm 14) \\ & 20.68(\pm 13) \\ & 5.59(\pm 4) \\ & 5.08(\pm 5) \\ & 3.35(\pm 7) \end{aligned}$
K^{0}, \bar{K}^{0}	$\frac{1}{2}, 0^{-}$	497．614（ $\pm 24)$			
K_{S}^{0}	see note a		$8.953(\pm 5) \times 10^{-11} \mathrm{~s}$	$\pi^{+} \pi^{-}$	69．20（ $\pm 5)$
				$\pi^{0} \pi^{0}$	30．69（ $\pm 5)$
K_{L}^{0}	see note a		$5.114(\pm 21) \times 10^{-8} \mathrm{~s}$	$\pi^{ \pm} e^{\mp} \nu_{e}\left(\bar{v}_{e}\right)$	40．55（ $\pm 12)$
				$\pi^{ \pm} \mu^{\mp} \nu_{\mu}\left(\bar{v}_{\mu}\right)$	27．04（ $\pm 7)$
				$\pi^{0} \pi^{0} \pi^{0}$	19．52（ $\pm 12)$
				$\pi^{+} \pi^{-} \pi^{0}$	12．54（ $\pm 5)$
$K^{* \pm}$	$\frac{1}{2}, 1^{-}$	891．66（ ± 26 ）	$50.8(\pm 9) \mathrm{MeV}$	K π	~ 100
$K^{* 0}$	$\frac{1}{2}, 1^{-}$	$896.00(\pm 25)$	$50.3(\pm 6) \mathrm{MeV}$	$K \pi$	~ 100

Decay

Particle $\quad I, J^{P C} \quad$ Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right) \quad$ Mean lifetime or width
Mode Fraction (\%)

Charmed mesons $(S=0, C= \pm 1, \tilde{B}=0)$
Quark content: $D^{+}=c \bar{d}, D^{0}=c \bar{u}, \bar{D}^{0}=u \bar{c}, D^{-}=d \bar{c}$, similarly for $D^{*} s$

Charmed strange mesons $(S=C= \pm 1, \tilde{B}=0)$
Quark content: $D_{s}^{+}=c \bar{s}, D_{s}^{-}=s \bar{c}$, similarly for $D_{s}^{*} s$

$D_{s}^{ \pm}$	$0,0^{-}$	$1968.49(\pm 34)$	$5.00(\pm 7) \times 10^{-13} \mathrm{~s}$	$K^{0}+X$	
			plus		
			$\bar{K}^{0}+X$	$39(\pm 28)$	
			$K^{+}+X$	$20(\pm 16)$	
			$\phi+X$	$18(\pm 13)$	
			$K^{-}+X$	$13(\pm 13)$	
			$e^{+}+X$	$8(\pm 7)$	
$D_{s}^{* \pm}$	$0,1^{-}$	$2112.3(\pm 5)$	$<1.9 \mathrm{MeV}$	$\tau^{+} \nu_{\tau}$	$6.4(\pm 15)$
			$D_{s}^{+} \gamma$	$94.2(\pm 7)$	
			$D_{s}^{+} \pi^{0}$	$5.8(\pm 7)$	

Bottom mesons $(S=C=0, \tilde{B}= \pm 1)$
Quark content: $B^{+}=u \bar{b}, B^{0}=d \bar{b}, \bar{B}^{0}=b \bar{d}, B^{-}=b \bar{u}$, similarly for $B^{*} s$

$B^{ \pm}$	$\frac{1}{2}, 0^{-}$	$5279.15(\pm 31)$	$1.638(\pm 11) \times 10^{-12} \mathrm{~s}$	$\bar{c} X$ (see note b)	$97(\pm 4)$
				$c X$ (see note b)	$23.4(\pm 20)$
B^{0}, \bar{B}^{0}	$\frac{1}{2}, 0^{-}$	$5279.53(\pm 33)$	$1.530(\pm 9) \times 10^{-12} \mathrm{~s}$	$\bar{c} X$ (see note b)	$95(\pm 5)$
				$c X$ (see note b)	$24.6(\pm 3)$
				$\ell^{+} v_{\ell}+X$	$10.33(\pm 28)$

| Particle $\quad I, J^{P C}$ | Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right) \quad$ Mean lifetime or width \quad Mode \quad Fraction (\%) |
| :--- | :--- | :--- | :--- | :--- |

Bottom strange mesons ($S=\mp 1, C=0, \tilde{B}= \pm 1$)
Quark content: $B_{s}^{0}=s \bar{b}, \bar{B}_{s}^{0}=b \bar{s}$

$B_{s}^{0}, \bar{B}_{s}^{0}$	$0,0^{-}$	$5366.3(\pm 6)$	$1.470(\pm 26) \times 10^{-12} \mathrm{~s}$	$D_{s}^{-}+X$	$93(\pm 25)$
			$D_{s}^{-} \ell^{+} \nu_{\ell}+X$	$7.9(\pm 24)$	

Bottom charmed mesons $(S=0, \tilde{B}=C= \pm 1)$
Quark content: $B_{c}^{+}=c \bar{b}, B_{c}^{-}=b \bar{c}$

$B_{c}^{ \pm}$	$0,0^{-}$	$6276(\pm 4)$	$4.6(\pm 17) \times 10^{-13} \mathrm{~s}$	several seen	
$c \bar{c}$ mesons					
$\eta_{c}(1 S)$	$0,0^{-+}$	$2980.3(\pm 12)$	$26.7(\pm 30) \mathrm{MeV}$	$K \bar{K} \pi$ $\eta \pi \pi$	$7.2(\pm 12)$ $J / \psi(1 S)$$\quad 0,1^{--}$
		$3096.916(11)$	$93.2(\pm 21) \mathrm{keV}$	$\eta^{\prime} \pi \pi$	$4.9(\pm 18)$
			$e^{+} e^{-}$	$4.1(\pm 17)$	
				$\mu^{+} \mu^{-}$	$5.94(\pm 5)$
$b \bar{b}$ mesons					$5.93(\pm 6)$
$\eta_{b}(1 S)$	$0,0^{-+}$	$9388.9(\pm 28)$	$?$		
$\Upsilon(1 S)$	$0,1^{--}$	$9460.30(\pm 26)$	$54.02(\pm 125) \mathrm{keV}$	$\eta^{\prime}+X$	$2.94(\pm 24)$
				$\ell^{+} \ell^{-}$all ℓ	$7.46(\pm 36)$

${ }^{a}$ These states are discussed in Section 6.6.1.
${ }^{b} \bar{c}$ stands for any state containing a \bar{c} quark and c stands for any state containing a c quark.

